Effect of Shear Resistance on Flexural Debonding Load-Carrying Capacity of RC Beams Strengthened with Externally Bonded FRP Composites
نویسندگان
چکیده
Debonding failure is the main failure mode in flexurally strengthened reinforced concrete beams by externally bonded or near surface mounted fibre reinforced polymer (FRP) composites. It is believed that FRP debonding will be initiated if the shear stress on the concrete-FRP interface reaches the tensile strength of concrete. However, it was found through experimental and analytical studies that the debonding mechanism of FRP composites has the potential of shear failure in combination with debonding failure. Moreover, the shear failure probably influences the debonding failure. Presently, there are very little experimental and analytical studies to investigate the influence of shear resistance of reinforced concrete (RC) beam on FRP debonding failure. The current study investigates and analyzes the effect of shear resistance on FRP debonding failure based on test results. The analytical results show that the shear resistance of RC beam has a great effect on flexural debonding load-carrying capacity of FRP-strengthened RC beam. The influence of shear resistance on flexural debonding load-carrying capacity must be fully considered in flexural strengthening design of RC beams. OPEN ACCESS Polymers 2014, 6 1367
منابع مشابه
Effect of Preload Level on Flexural Load-carrying Capacity of RC Beams Strengthened by Externally Bonded FRP Sheets
Most of the laboratory tests investigated the flexural performance of un-preloaded or undamaged RC beams strengthened with CFRP composites. However, in engineering applications, the structural member must carry a certain load or damage. There is a lack of systematical investigations on the effects of preload or damage level on the flexural load-carrying capacity of CFRP-strengthened RC beams. T...
متن کاملDebonding Failures of Rc Beams Strengthened with Externally Bonded Frp Reinforcement: Behaviour and Modelling
Both the flexural and shear strengths of reinforced concrete (RC) beams can be substantially enhanced using externally bonded fibre reinforced polymer (FRP) composites. Failures of such FRP-strengthened RC beams often occur by debonding of the FRP plate from the RC beam in a number of forms. Despite numerous theoretical and experimental studies on debonding failures of FRP-strengthened RC beams...
متن کاملStrut-and-Tie Method for Prediction of Ultimate Shear Capacity of Shear-Strengthened RC deep beams with FRP
The main objective of this study is to propose the Strut-and-Tie method (STM) to predict the shear capacity of simply supported RC deep beams shear-strengthened with carbon fiber reinforced polymers (CFRP). It is assumed that, the total carried shear force by shear-strengthened RC deep beam provided by three independent resistance, namely diagonal concrete strut due to Strut-and-tie mechanism, ...
متن کاملDebonding-Related Strain Limits for Externally Bonded FRP Sheets in Flexurally Strengthened Reinforced Concrete Beams
Debonding problems of externally bonded fiber reinforced polymer (FRP) sheets in flexurally FRP-strengthened reinforced concrete (RC) beams have been a concern and a research challenge since their application of this strengthening technique. Intermediate crack induced debonding is the most common failure mode which is that the debonding initiates at the critical flexural-shear or flexural crack...
متن کاملExperimental and Theoretical Investigation on Shear Strengthening of RC Precraced Continuous T-beams Using CFRP Strips
Carbon fiber reinforced polymer (CFRP) sheets are externally bonded to reinforced concrete (RC) members to provide additional strength such as flexural, shear, etc. It has been widely accepted that carbon fiber reinforced polymers (CFRPs) can be used effectively to strengthen reinforced concrete (RC) members. This paper is intended to study and use externally bonded CFRP strips to repair and st...
متن کامل